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Abstract—With the advent of multicore processors, there is a
great need to write concurrency programs to take advantage
of parallel computing resources. However, the undetermined
execution of the concurrency programs poses a huge challenge
to current dynamic malware analysis how to guarantee the
program is secure under the same input. In our work, a dynamic
taint analysis of concurrent program (DTAC) is proposed to
systematically detect tainted instances on all possible executions
under a given input, by introducing the symbolic execution
to guide dynamic analysis. Symbolic analysis infers alternate
interleavings of an executed trace and computes thread schedules
that guide future executions. Dynamic analysis explores new
execution traces that drive future symbolic analysis. Then, the
analysis can identify whether there is abnormal behavior within
these executions by tracing the data flow. A prototype is developed
for multithreaded C programs, built upon LLVM, KLEE and
Z3. The primary experiments show that our method can find all
possible tainted instances in the demo case and can systematically
analyze real concurrency programs in SPLASH2 and PARSEC.

I. INTRODUCTION

Multithreaded programming is a key technique to unleash
the full potential of present and future generations of parallel
computing systems based on the use of multi-core processors.
However, the intrinsic nondeterminism of parallel execution
invalid most dynamic malware analysis techniques which
monitor the execution of the program and identify whether
there is malicious behavior in this execution. In this paper,
we select dynamic taint analysis (DTA), one of most useful
dynamic malware analysis technique, to study how it fails to
deal with concurrency programs and how to upgrade.

Figure 1 shows the demo program P where the thread main()
creates one thread foo(). There is two shared variables x and y
(all are accessed by all threads). The input sensdata is sensitive
information. We aim to detect whether there is the information
leak in the demo program. It is equals to detect all variables
are tainted by the input and whether they are leaked. Since
there is only line 5 would leak the information in this demo
program, we need to verify whether the variable y sent at line
5 is relevant to the input sensdata. Four possible executions of
demo program are shown in Figure 2. The number 1 and 2 at
the top respectively represent the threads main and foo. Within
each node we give the line numbers. Besides, node 8 with
T/F means the branch turns true/false. All the tainted nodes
are marked red. For ease of understanding we illustrate the

0 void main ( i n t sensdata ){
1 y = 0 ; x = 0 ;
2 i n t data = sensdata ;
3 c r e a t e ( foo , NULL) ;
4 x = data ;
5 send (y ) ;
6 }

7 void ∗ f oo ( ){
8 i f ( x != 0) {
9 y = x ;

10 }
11 }

1

Fig. 1. A multithreaded program with shared variables x,y
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Fig. 2. Four valid executions of the program in Figure 1

example at the source code level and assume each statement is
atomic, although our implementation is at the LLVM bytecode
level.

The further analysis shows that: 1) in Trace 1, y is irrelevant
to x since line 9 would not be executed; 2) in Trace 2 and 3,
y sent at line 5 is irrelevant to x and the input sensdata, since
line 9 is executed after line 5; 3) sensdata would be sent out
at line 4 only in Trace 4. When we analyze the demo program
with DTA, the malicious behavior would only be detected if
the program is executed as Trace 4; otherwise, we will miss
this malware.

Figure 3 depicts the insufficiency of applying DTA on
multithreaded programs. By monitoring a particular execution
under a given input, existing DTA techniques have two severe
shortcomings. When a variable x is declared not tainted,
a future execution under the same input but with different
thread schedule may contradict the current result. When a
variable x is declared tainted, although it is true, propagation
evidence for such tainting cannot be easily reproduced. Unlike
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Fig. 3. Existing DTA techniques fail in concurrency programs

in sequential programs where a re-execution under the same
input is sufficient, deterministically replaying an execution is
a major challenge for multithreaded programs[1].

In order to find all tainted variables, one intuitive solution
is to examine all possible execution traces. However, there
are two major challenges: 1) the user has no control over
the scheduling of threads in most current environments and
few DTA technique supports thread scheduling; and 2) it
is infeasible to explicitly check all thread interleavings. The
number of possible interleavings of a multithreaded program
with n threads each executing at most k steps can be as large
as (nk)!/(k!)n ≥ (n!)k, a complexity that is exponential in
both n and k[2].

In this paper, we proposed a dynamic taint analysis of
concurrent program (DTAC) to systematically detect tainted
instances on all possible executions under a given input, by
introducing the symbolic execution to guide dynamic analysis.
We also develop the prototype of DTAC for multithreaded C
programs, which is built upon LLVM, KLEE and Z3.

II. DYNAMIC TAINT ANALYSIS OF CONCURRENT
PROGRAM

In order to address the challenges of taint analysis for mul-
tithreaded programs, we develop a synergistic taint analysis
framework as depicted in Figure 4, which has three compo-
nents to analyze and guide program executions instead of just
observing an execution as in existing DTA techniques. The
new components include a predicative symbolic predicative
analysis component, an alternate branch search component,
and a guided execution component (for dynamic analysis).
The entire framework forms a synergistic loop, where the
symbolic analysis and the dynamic analysis feedback each
other, to guarantee the systematic and complete traversal of
all program behaviors for a given test input.

Specifically, in the symbolic analysis component, we cap-
ture valid partial order of a given execution trace using a
quantifier-free first-order logic (FOL) formula and conduct a
form of predictive analysis to infer new program behaviors. In
the alternate branch search component, we detect the branch
sequences that are not yet visited by the previous executions,
and compute a thread scheduling that enables the execution
with new branches. In the guided execution component, we
enforce the newly computed thread scheduling in executing the
program. Such execution, in turn, leads to new execution traces
to be analyzed by the symbolic analysis. The loop terminates
when no new distinctive program path is found.
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Fig. 4. Framework of DTAC)

TABLE I
ACCURACY COMPARISON

Prog. LOC #Input #DTA #DTAC Delta
pfscan 998 4 34 36 3

lunc 1182 3 16 50 34
luc 1401 3 154 179 25
fft 1482 3 582 631 49

radix 1547 2 71 76 5
swarm 2286 2 224 224 0

total 1483 3 180 199 19

III. EXPERIMENT AND DISCUSSION

We firstly analyze the dome program in figure 1. Four
execution traces and all possible tainted variables are found
as shown in Figure 2. The information leak in Trace 4
is also detected. Moreover, we can replay the execution to
demonstrate how sensdata is transferred to y and sent out.

Then, an empirical study is conducted on 7 programs
from two concurrency program benchmark SPLASH2 and
PARSEC, in which the inputs have been added. As shown
in Table I, LOC is lines of code, #Input is the number of
the input, #DTA is the number of tainted variables detected
with DTA, #DTAC is the number with DTAC, and Delta is the
number of the improvement of DTAC. In total, there are 116
new tainted variables have been detected in these programs
with DTAC, about 10.7

IV. CONCLUSION AND FUTURE WORK

We present a dynamic taint analysis for concurrency pro-
grams by introducing symbolic execution into taint analysis.
DTAC is able to offer a systematic and complete coverage of
concurrency programs. We also show how to detect the infor-
mation leaking in concurrency programs which are missed in
current taint analysis techniques, with DTAC.
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